Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.140
Filter
1.
Int J Epidemiol ; 53(3)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38725300

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the third-most-common cancer worldwide and its rates are increasing. Elevated body mass index (BMI) is an established risk factor for CRC, although the molecular mechanisms behind this association remain unclear. Using the Mendelian randomization (MR) framework, we aimed to investigate the mediating effects of putative biomarkers and other CRC risk factors in the association between BMI and CRC. METHODS: We selected as mediators biomarkers of established cancer-related mechanisms and other CRC risk factors for which a plausible association with obesity exists, such as inflammatory biomarkers, glucose homeostasis traits, lipids, adipokines, insulin-like growth factor 1 (IGF1), sex hormones, 25-hydroxy-vitamin D, smoking, physical activity (PA) and alcohol consumption. We used inverse-variance weighted MR in the main univariable analyses and performed sensitivity analyses (weighted-median, MR-Egger, Contamination Mixture). We used multivariable MR for the mediation analyses. RESULTS: Genetically predicted BMI was positively associated with CRC risk [odds ratio per SD (5 kg/m2) = 1.17, 95% CI: 1.08-1.24, P-value = 1.4 × 10-5] and robustly associated with nearly all potential mediators. Genetically predicted IGF1, fasting insulin, low-density lipoprotein cholesterol, smoking, PA and alcohol were associated with CRC risk. Evidence for attenuation was found for IGF1 [explained 7% (95% CI: 2-13%) of the association], smoking (31%, 4-57%) and PA (7%, 2-11%). There was little evidence for pleiotropy, although smoking was bidirectionally associated with BMI and instruments were weak for PA. CONCLUSIONS: The effect of BMI on CRC risk is possibly partly mediated through plasma IGF1, whereas the attenuation of the BMI-CRC association by smoking and PA may reflect confounding and shared underlying mechanisms rather than mediation.


Subject(s)
Body Mass Index , Colorectal Neoplasms , Mendelian Randomization Analysis , Obesity , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Risk Factors , Obesity/genetics , Obesity/epidemiology , Insulin-Like Growth Factor I/metabolism , Alcohol Drinking/epidemiology
2.
BMC Med Genomics ; 17(1): 128, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730451

ABSTRACT

The parallel rise in obesity and male infertility in modern societies necessitates the identification of susceptibility genes underlying these interconnected health issues. In our study, we conducted a comprehensive search in the OMIM database to identify genes commonly associated with male infertility and obesity. Subsequently, we performed an insilico analysis using the REVEL algorithm to detect pathogenic single nucleotide polymorphisms (SNPs) in the coding region of these candidate genes. To validate our findings in vivo, we conducted a comprehensive analysis of SNPs and gene expression of candidate genes in 200 obese infertile subjects and 240 obese fertile individuals using ARMS-PCR. Additionally, we analyzed 20 fertile and 22 infertile obese individuals using Realtime-qPCR. By removing duplicated queries, we obtained 197 obesity-related genes and 102 male infertility-related genes from the OMIM database. Interestingly, the APOB gene was found in common between the two datasets. REVEL identified the rs13306194 variant as potentially pathogenic with a calculated score of 0.524. The study identified a significant association between the AA (P value = 0.001) genotype and A allele (P value = 0.003) of the APOB rs13306194 variant and infertility in obese men. APOB expression levels were significantly lower in obese infertile men compared to obese fertile controls (p < 0.01). Moreover, the AA genotype of rs13306194 APOB was associated with a significant decrease in APOB gene expression in obese infertile men (p = 0.05). There is a significant association between the Waist-to-Hip Ratio (WHR) and LH with infertility in the obese infertile group. These results are likely to contribute to a better understanding of the causes of male infertility and its association with obesity.


Subject(s)
Infertility, Male , Obesity , Polymorphism, Single Nucleotide , Humans , Male , Infertility, Male/genetics , Obesity/genetics , Obesity/complications , Adult , Genetic Predisposition to Disease , Case-Control Studies
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732002

ABSTRACT

The escalating prevalence of metabolic disorders, notably type 2 diabetes (T2D) and obesity, presents a critical global health challenge, necessitating deeper insights into their molecular underpinnings. Our study integrates proteomics and metabolomics analyses to delineate the complex molecular landscapes associated with T2D and obesity. Leveraging data from 130 subjects, including individuals with T2D and obesity as well as healthy controls, we elucidate distinct molecular signatures and identify novel biomarkers indicative of disease progression. Our comprehensive characterization of cardiometabolic proteins and serum metabolites unveils intricate networks of biomolecular interactions and highlights differential protein expression patterns between T2D and obesity cohorts. Pathway enrichment analyses reveal unique mechanisms underlying disease development and progression, while correlation analyses elucidate the interplay between proteomics, metabolomics, and clinical parameters. Furthermore, network analyses underscore the interconnectedness of cardiometabolic proteins and provide insights into their roles in disease pathogenesis. Our findings may help to refine diagnostic strategies and inform the development of personalized interventions, heralding a new era in precision medicine and healthcare innovation. Through the integration of multi-omics approaches and advanced analytics, our study offers a crucial framework for deciphering the intricate molecular underpinnings of metabolic disorders and paving the way for transformative therapeutic strategies.


Subject(s)
Biomarkers , Diabetes Mellitus, Type 2 , Metabolomics , Obesity , Proteomics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Humans , Obesity/metabolism , Obesity/genetics , Proteomics/methods , Metabolomics/methods , Male , Female , Middle Aged
4.
JCI Insight ; 9(9)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38716728

ABSTRACT

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Subject(s)
Adipose Tissue , CD36 Antigens , Diet, High-Fat , Mice, Knockout , Obesity , Animals , Female , Humans , Male , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , CD36 Antigens/metabolism , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Lipid Metabolism/genetics , Mice, Inbred C57BL , Obesity/metabolism , Obesity/genetics
5.
Sci Rep ; 14(1): 10271, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704452

ABSTRACT

The identification of novel screening tools is imperative to empower the early detection of colorectal cancer (CRC). The influence of the long non-coding RNA maternally expressed gene 3 (MEG3) rs941576 single nucleotide polymorphism on CRC susceptibility remains uninvestigated. This research appraised MEG3 rs941576 association with the risk and clinical features of CRC and obesity-related CRC and its impact on serum MEG3 expression and its targets miR-27a/insulin-like growth factor 1 (IGF1)/IGF binding protein 3 (IGFBP3) and miR-181a/sirtuin 1 (SIRT1), along with the potential of these markers in obesity-related CRC diagnosis. 130 CRC patients (60 non-obese and 70 obese) and 120 cancer-free controls (64 non-obese and 56 obese) were enrolled. MEG3 targets were selected using bioinformatics analysis. MEG3 rs941576 was associated with magnified CRC risk in overall (OR (95% CI) 4.69(1.51-14.57), P = 0.0018) and stratified age and gender groups, but not with obesity-related CRC risk or MEG3/downstream targets' expression. Escalated miR-27a and IGFBP3 and reduced IGF1 serum levels were concomitant with MEG3 downregulation in overall CRC patients versus controls and obese versus non-obese CRC patients. Serum miR-181a and SIRT1 were upregulated in CRC patients versus controls but weren't altered in the obese versus non-obese comparison. Serum miR-181a and miR-27a were superior in overall and obesity-related CRC diagnosis, respectively; meanwhile, IGF1 was superior in distinguishing obese from non-obese CRC patients. Only serum miR-27a was associated with obesity-related CRC risk in multivariate logistic analysis. Among overall CRC patients, MEG3 rs941576 was associated with lymph node (LN) metastasis and tumor stage, serum MEG3 was negatively correlated with tumor stage, while SIRT1 was correlated with the anatomical site. Significant correlations were recorded between MEG3 and anatomical site, SIRT1 and tumor stage, and miR-27a/IGFBP3 and LN metastasis among obese CRC patients, while IGF1 was correlated with tumor stage and LN metastasis among non-obese CRC patients. Conclusively, this study advocates MEG3 rs941576 as a novel genetic marker of CRC susceptibility and prognosis. Our findings accentuate circulating MEG3/miR-27a/IGF1/IGFBP3, especially miR-27a as valuable markers for the early detection of obesity-related CRC. This axis along with SIRT1 could benefit obesity-related CRC prognosis.


Subject(s)
Colorectal Neoplasms , Genetic Predisposition to Disease , Insulin-Like Growth Factor Binding Protein 3 , MicroRNAs , Obesity , Polymorphism, Single Nucleotide , RNA, Long Noncoding , Sirtuin 1 , Humans , RNA, Long Noncoding/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Male , MicroRNAs/genetics , Obesity/complications , Obesity/genetics , Middle Aged , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 3/blood , Sirtuin 1/genetics , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Gene Expression Regulation, Neoplastic , Aged , Case-Control Studies , Risk Factors
6.
Nat Commun ; 15(1): 3769, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704393

ABSTRACT

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Subject(s)
Adipocytes , Bone Marrow , Leptin , Osteogenesis , Receptors, Estrogen , Animals , Osteogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Mice , Leptin/metabolism , Leptin/genetics , Bone Marrow/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/genetics , ERRalpha Estrogen-Related Receptor , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Male , Mice, Inbred C57BL , Signal Transduction , Bone Marrow Cells/metabolism , Mice, Knockout
7.
Nutrients ; 16(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732542

ABSTRACT

Obesity's variability is significantly influenced by the interplay between genetic and environmental factors. We aimed to integrate the combined impact of genetic risk score (GRSBMI) with physical activity (PA), sugar-sweetened beverages (SSB), wine intake, and eating habits score (EHS) on obesity predisposition risk. Adults' (n = 5824) data were analyzed for common obesity-related single nucleotide polymorphisms and lifestyle habits. The weighted GRSBMI was constructed and categorized into quartiles (Qs), and the adjusted multivariate logistic regression models examined the association of GRSBMI with obesity (BMI ≥ 30) and lifestyle factors. GRSBMI was significantly associated with obesity risk. Each GRSBMI unit was associated with an increase of 3.06 BMI units (p ≤ 0.0001). PA markedly reduced obesity risk across GRSBMI Qs. Inactive participants' (≥90 min/week) mean BMI was higher in GRSBMI Q3-Q4 compared to Q1 (p = 0.003 and p < 0.001, respectively). Scoring EHS ≥ median, SSBs (≥1 cup/day), and non-wine drinking were associated with higher BMI within all GRSBMI Qs compared to EHS < median, non-SSBs, and non-wine drinkers. Mean BMI was higher in GRSBMI Q4 compared to other quartiles (p < 0.0001) in non-wine drinkers and compared to Q1 for SSB's consumers (p = 0.07). A higher GRSBMI augmented the impact of lifestyle factors on obesity. The interplay between GRSBMI and modifiable lifestyle factors provides a tailored personalized prevention and treatment for obesity management.


Subject(s)
Body Mass Index , Exercise , Genetic Predisposition to Disease , Life Style , Obesity , Polymorphism, Single Nucleotide , Humans , Male , Obesity/genetics , Female , Adult , Middle Aged , Risk Factors , Feeding Behavior , Sugar-Sweetened Beverages , Alcohol Drinking , Genetic Risk Score
8.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732183

ABSTRACT

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.


Subject(s)
Amino Acids , Glucose , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Microplastics , Polystyrenes , Animals , Liver/metabolism , Liver/drug effects , Mice , Glucose/metabolism , Lipid Metabolism/drug effects , Amino Acids/metabolism , Administration, Oral , Leptin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Adipogenesis/drug effects , Male , Lipogenesis/drug effects , Obesity/metabolism , Obesity/etiology , Obesity/genetics , Humans , Lipolysis/drug effects
9.
Calcif Tissue Int ; 114(6): 638-649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642089

ABSTRACT

Type 2 diabetes (T2D) increases fracture incidence and fracture-related mortality rates (KK.Cg-Ay/J. The Jackson Laboratory; Available from: https://www.jax.org/strain/002468 ). While numerous mouse models for T2D exist, few effectively stimulate persistent hyperglycemia in both sexes, and even fewer are suitable for bone studies. Commonly used models like db/db and ob/ob have altered leptin pathways, confounding bone-related findings since leptin regulates bone properties (Fajardo et al. in Journal of Bone and Mineral Research 29(5): 1025-1040, 2014). The Yellow Kuo Kondo (KK/Ay) mouse, a polygenic mutation model of T2D, is able to produce a consistent diabetic state in both sexes and addresses the lack of a suitable model of T2D for bone studies. The diabetic state of KK/Ay stems from a mutation in the agouti gene, responsible for coat color in mice. This mutation induces ectopic gene expression across various tissue types, resulting in diabetic mice with yellow fur coats (Moussa and Claycombe in Obesity Research 7(5): 506-514, 1999). Male and female KK/Ay mice exhibited persistent hyperglycemia, defining them as diabetic with blood glucose (BG) levels consistently exceeding 300 mg/dL. Notably, male control mice in this study were also diabetic, presenting a significant limitation. Nevertheless, male and female KK/Ay mice showed significantly elevated BG levels, HbA1c, and serum insulin concentration when compared to the non-diabetic female control mice. Early stages of T2D are characterized by hyperglycemia and hyperinsulinemia resulting from cellular insulin resistance, whereas later stages may feature hypoinsulinemia due to ß-cell apoptosis (Banday et al. Avicenna Journal of Medicine 10(04): 174-188, 2020 and Klein et al. Cell Metabolism 34(1): 11-20, 2022). The observed hyperglycemia, hyperinsulinemia, and the absence of differences in ß-cell mass suggest that KK/Ay mice in this study are modeling the earlier stages of T2D. While compromised bone microarchitecture was observed in this study, older KK/Ay mice, representing more advanced stages of T2D, might exhibit more pronounced skeletal manifestations. Compared to the control group, the femora of KK/Ay mice had higher cortical area and cortical thickness, and improved trabecular properties which would typically be indicative of greater bone strength. However, KK/Ay mice displayed lower cortical tissue mineral density in both sexes and increased cortical porosity in females. Fracture instability toughness of the femora was lower in KK/Ay mice overall compared to controls. These findings indicate that decreased mechanical integrity noted in the femora of KK/Ay mice was likely due to overall bone quality being compromised.


Subject(s)
Diabetes Mellitus, Type 2 , Disease Models, Animal , Mutation , Obesity , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Mice , Female , Male , Mutation/genetics , Obesity/genetics , Obesity/metabolism , Obesity/complications , Bone and Bones/metabolism , Bone and Bones/pathology , Mice, Obese , Bone Density/genetics
10.
Int J Med Sci ; 21(5): 784-794, 2024.
Article in English | MEDLINE | ID: mdl-38617006

ABSTRACT

Introduction: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder with clinical features of retinal dystrophy, obesity, postaxial polydactyly, renal anomalies, learning disabilities, hypogonadism, and genitourinary abnormalities. Nevertheless, previous studies on the phenotypic traits of BBS heterozygous carriers have generated inconclusive results. The aim of our study was to investigate the impact of BBS heterozygosity on carriers when compared to non-carriers within the Taiwanese population. Materials and Methods: This study follows a hospital-based case-control design. We employed the Taiwan Biobank version 2 (TWBv2) array to identify three specific loci associated with BBS (rs773862084, rs567573386, and rs199910690). In total, 716 patients were included in the case group, and they were compared to a control group of 2,864 patients who lacked BBS alleles. The control group was selected through gender and age matching at a ratio of 1:4. The association between BBS-related loci and comorbidity was assessed using logistic regression models. Results: We found that BBS heterozygous carriers exhibited a significant association with elevated BMI levels, especially the variant rs199910690 in MKS1 (p=0.0037). The prevalence of comorbidities in the carriers' group was not higher than that in the non-carriers' group. Besides, the average values of the biochemistry data showed no significant differences, except for creatinine level. Furthermore, we conducted a BMI-based analysis to identify specific risk factors for chronic kidney disease (CKD). Our findings revealed that individuals carrying the CA/AA genotype of the BBS2 rs773862084 variant or the CT/TT genotype of the MKS1 rs199910690 variant showed a reduced risk of developing CKD, irrespective of their BMI levels. When stratified by BMI level, obese males with the MKS1 rs199910690 variant and obese females with the BBS2 rs773862084 variant exhibited a negative association with CKD development. Conclusion: We found that aside from the association with overweight and obesity, heterozygous BBS mutations did not appear to increase the predisposition of individuals to comorbidities and metabolic diseases. To gain a more comprehensive understanding of the genetic susceptibility associated with Bardet-Biedl Syndrome (BBS), further research is warranted.


Subject(s)
Bardet-Biedl Syndrome , Renal Insufficiency, Chronic , Female , Male , Humans , Bardet-Biedl Syndrome/epidemiology , Bardet-Biedl Syndrome/genetics , Comorbidity , Heterozygote , Obesity/epidemiology , Obesity/genetics , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
11.
Front Immunol ; 15: 1380476, 2024.
Article in English | MEDLINE | ID: mdl-38605957

ABSTRACT

Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.


Subject(s)
Diabetes Mellitus, Type 2 , Epigenesis, Genetic , Humans , Dysbiosis , Obesity/genetics , Inflammation , Fatty Acids, Volatile/metabolism
12.
Zhongguo Zhen Jiu ; 44(4): 449-454, 2024 Apr 12.
Article in English, Chinese | MEDLINE | ID: mdl-38621733

ABSTRACT

OBJECTIVES: To observe the effects of moxibustion on intestinal barrier function and Toll-like receptor 4 (TLR4)/nuclear factor-κB p65 (NF-κB p65) signaling pathway in obese rats and explore the mechanism of moxibustion in the intervention of obesity. METHODS: Fifty-five Wistar rats of SPF grade were randomly divided into a normal group (10 rats) and a modeling group (45 rats). In the modeling group, the obesity model was established by feeding high-fat diet. Thirty successfully-modeled rats were randomized into a model group, a moxibustion group, and a placebo-control group, with 10 rats in each one. In the moxibustion group, moxibustion was applied at the site 3 cm to 5 cm far from the surface of "Zhongwan" (CV 12), with the temperature maintained at (46±1 ) ℃. In the placebo-control group, moxibustion was applied at the site 8 cm to 10 cm far from "Zhongwan" (CV 12), with the temperature maintained at (38±1) ℃. The intervention was delivered once daily for 8 weeks in the above two groups. The body mass and food intake of the rats were observed before and after intervention in each group. Using ELISA methool, the levels of serum triacylglycerol (TG), total cholesterol (TC) and lipopolysaccharide (LPS) were detected and the insulin resistance index (HOMA-IR) was calculated. HE staining was used to observe the morphology of colon tissue. The mRNA expression of zonula occludens-1 (ZO-1), Occludin, Claudin-1, TLR4 and NF-κB p65 in the colon tissue was detected by quantitative real-time PCR; and the protein expression of ZO-1, Occludin, Claudin-1, TLR4 and NF-κB p65 was detected by Western blot in the rats of each group. RESULTS: Compared with the normal group, the body mass, food intake, the level of HOMA-IR, and the serum levels of TC, TG and LPS were increased in the rats of the model group (P<0.01); those indexes in the moxibustion group were all reduced when compared with the model group and the placebo-control group respectively (P<0.01, P<0.05). Compared with the normal group, a large number of epithelial cells in the mucosa of colon tissue was damaged, shed, and the inflammatory cells were infiltrated obviously in the interstitium in the rats of the model group. When compared with the model group, in the moxibustion group, the damage of the colon tissue was recovered to various degrees and there were few infiltrated inflammatory cells in the interstitium, while, the epithelial injury of the colon tissue was slightly recovered and the infiltrated inflammatory cells in the interstitium were still seen in the placebo-control group. The mRNA and protein expressions of ZO-1, Occludin and Caudin-1 were decreased in the model group compared with those in the normal group (P<0.01). When compared with the model group and the placebo-control group, the mRNA and protein expressions of these indexes were increased in the moxibustion group (P<0.01, P<0.05). In the model group, the mRNA and protein expressions of TLR4 and NF-κB p65 were increased when compared with those in the normal group (P<0.01), and the mRNA and protein expressions of these indexes were reduced in the moxibustion group when compared with those in the model group and the placebo-control group (P<0.01). CONCLUSIONS: Moxibustion can reduce the body mass and food intake, regulate the blood lipid and improve insulin resistance in the rats of obesity. It may be related to alleviating inflammatory response through improving intestinal barrier function and modulating the intestinal TLR4/NF-κB p65 signaling pathway.


Subject(s)
Insulin Resistance , Moxibustion , Rats , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Rats, Wistar , Toll-Like Receptor 4/genetics , Lipopolysaccharides/metabolism , Intestinal Barrier Function , Occludin/metabolism , Claudin-1/metabolism , Signal Transduction , Obesity/genetics , Obesity/therapy , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
13.
Am J Physiol Endocrinol Metab ; 326(5): E696-E708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38568151

ABSTRACT

Glycogen is a form of energy storage for glucose in different tissues such as liver and skeletal muscle. It remains incompletely understood how glycogen impacts on adipose tissue functionality. Cold exposure elevated the expression of Gys1 that encodes glycogen synthase 1 in brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT). The in vivo function of Gys1 was analyzed using a mouse model in which Gys1 was deleted specifically in adipose tissues. Under normal chow conditions, Gys1 deletion caused little changes to body weight and glucose metabolism. Deletion of Gys1 abrogated upregulation of UCP1 and other thermogenesis-related genes in iWAT upon prolonged cold exposure or treatment with ß3-adrenergic receptor agonist CL-316,243. Stimulation of UCP1 by CL-316,243 in adipose-derived stromal cells (stromal vascular fractions, SVFs) was also reduced by Gys1 deletion. Both the basal glycogen content and CL-316,243-stimulated glycogen accumulation in adipose tissues were reduced by Gys1 deletion. High-fat diet-induced obesity and insulin resistance were aggravated in Gys1-deleted mice. The loss of body weight upon CL-316,243 treatment was also abrogated by the loss of Gys1. In conclusion, our results underscore the pivotal role of glycogen synthesis in adaptive thermogenesis in beige adipose tissue and its impact on diet-induced obesity in mice.NEW & NOTEWORTHY Glycogen is one of major types of fuel reserve in the body and its classical function is to maintain blood glucose level. This study uncovers that glycogen synthesis is required for beige fat tissue to generate heat upon cold exposure. Such a function of glycogen is linked to development of high-fat diet-induced obesity, thus extending our understanding about the physiological functions of glycogen.


Subject(s)
Adipose Tissue, Beige , Diet, High-Fat , Glycogen , Obesity , Thermogenesis , Animals , Thermogenesis/genetics , Thermogenesis/physiology , Mice , Obesity/metabolism , Obesity/genetics , Adipose Tissue, Beige/metabolism , Glycogen/metabolism , Glycogen/biosynthesis , Male , Mice, Knockout , Mice, Inbred C57BL , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Glycogen Synthase/metabolism , Glycogen Synthase/genetics , Cold Temperature , Adaptation, Physiological , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics
15.
Sci Rep ; 14(1): 9753, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38679617

ABSTRACT

Genome-wide association studies have identified several genetic variants associated with nonalcoholic fatty liver disease. To emphasize metabolic abnormalities in fatty liver, metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been introduced; thus, we aimed to investigate single-nucleotide polymorphisms related to MAFLD and its subtypes. A genome-wide association study was performed to identify genetic factors related to MAFLD. We used a Korean population-based sample of 2282 subjects with MAFLD and a control group of 4669. We replicated the results in a validation sample which included 639 patients with MAFLD and 1578 controls. Additionally, we categorized participants into three groups, no MAFLD, metabolic dysfunction (MD)-MAFLD, and overweight/obese-MAFLD. After adjusting for age, sex, and principal component scores, rs738409 [risk allele G] and rs3810622 [risk allele T], located in the PNPLA3 gene, showed significant associations with MAFLD (P-values, discovery set = 1.60 × 10-15 and 4.84 × 10-10; odds ratios, 1.365 and 1.284, validation set = 1.39 × 10-4, and 7.15 × 10-4, odds ratios, 1.299 and 1.264, respectively). An additional SNP rs59148799 [risk allele G] located in the GATAD2A gene showed a significant association with MAFLD (P-values, discovery set = 2.08 × 10-8 and validation set = 0.034, odds ratios, 1.387 and 1.250). rs738409 was significantly associated with MAFLD subtypes ([overweight/obese-MAFLD; odds ratio (95% confidence interval), P-values, 1.515 (1.351-1.700), 1.43 × 10-12 and MD-MAFLD: 1.300 (1.191-1.416), 2.90 × 10-9]. There was a significant relationship between rs3810622 and overweight/obese-MAFLD and MD-MAFLD [odds ratios (95% confidence interval), P-values, 1.418 (1.258, 1.600), 1.21 × 10-8 and 1.225 (1.122, 1.340), 7.06 × 10-6, respectively]; the statistical significance remained in the validation set. PNPLA3 was significantly associated with MAFLD and MAFLD subtypes in the Korean population. These results indicate that genetic factors play an important role in the pathogenesis of MAFLD.


Subject(s)
Acyltransferases , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipase , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Male , Female , Republic of Korea/epidemiology , Middle Aged , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Adult , Membrane Proteins/genetics , Obesity/genetics , Alleles , Aged , Case-Control Studies
16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612648

ABSTRACT

Obesity and overweight are common and complex conditions influenced by multiple genetic and environmental factors. Several genetic variants located in the genes involved in clock systems and fat taste perception can affect metabolic health. In particular, the polymorphisms in CLOCK and BMAL1 genes were reported to be significantly related to cardiovascular disease, metabolic syndrome, sleep reduction, and evening preference. Moreover, genetic variants in the CD36 gene have been shown to be involved in lipid metabolism, regulation of fat intake, and body weight regulation. The aim of this study is to evaluate, for the first time, the association between variants in some candidate genes (namely, BMAL1 rs7950226 (G>A), CLOCK rs1801260 (A>G), CLOCK rs4864548 (G>A), CLOCK rs3736544 (G>A), CD36 rs1984112 (A>G), CD36 rs1761667 (G>A)) and overweight/obesity (OB) in pregnant women. A total of 163 normal-weight (NW) and 128 OB participants were included. A significant correlation was observed between A-allele in CLOCK rs4864548 and an increased risk of obesity (OR: 1.97; 95% CI 1.22-3.10, p = 0.005). In addition, we found that subjects carrying the haplotype of rs1801260-A, rs4864548-A, and rs3736544-G are likely to be overweight or obese (OR 1.47, 95% CI 1.03-2.09, p = 0.030), compared with those with other haplotypes. Moreover, a significant relation was observed between third-trimester lipid parameters and genetic variants-namely, CD36 rs1984112, CD36 rs1761667, BMAL1 rs7950226, and CLOCK rs1801260. A multivariate logistic regression model revealed that CLOCK rs4864548 A-allele carriage was a strong risk factor for obesity (OR 2.05, 95% CI 1.07-3.93, p = 0.029); on the other hand, greater adherence to Mediterranean diet (OR 0.80, 95% CI 0.65-0.98, p = 0.038) and higher HDL levels (OR 0.96, 95% CI 0.94-0.99, p = 0.021) were related to a reduced risk of obesity. Interestingly, an association between maternal CLOCK rs4864548 and neonatal birthweight was detected (p = 0.025). These data suggest a potential role of the polymorphisms in clock systems and in fat taste perception in both susceptibility to overweight/obesity and influencing the related metabolic traits in pregnant women.


Subject(s)
ARNTL Transcription Factors , Overweight , Pregnancy , Infant, Newborn , Female , Humans , Overweight/genetics , ARNTL Transcription Factors/genetics , Pregnant Women , Obesity/genetics , Alleles , CD36 Antigens/genetics
17.
Open Vet J ; 14(1): 428-437, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38633156

ABSTRACT

Background: Obesity is one of the most prevalent and perilous health affairs. Male obesity-associated secondary hypogonadism (MOSH) is one of many of its complexities, which is mounting in parallel with the aggravation of obesity. Magnetic nanoparticles seem to be an advanced favorable trend in multiple biomedical fields. Aim: In this study, we explore the therapeutic effects of superparamagnetic iron oxide nanoparticles (SPIONs) coated with carboxymethyl cellulose (CMC) on an obese male rat model with MOSH syndrome, comparing their impacts with a well-known anti-obesity medication (Orlistat). Methods: 42 male albino rats split into 7 equal groups: 1-negative control: nonobese, untreated; 35 rats fed the high fat-high fructose (HFHF) diet for a period of 12 weeks. Obese rats splitted into 6 equal groups; 2-positive control: obese untreated; 3-obese given Orlistat (30 mg/kg); 4-obese given CMC-SPIONs (25 mgFe/kg); 5-obese given CMC-SPIONs (50 mgFe/kg); 6-obese given CMC-SPIONs(25 mgFe/kg) + Orlistat (30 mg/kg), 7-obese given CMC-SPIONs (50 mgFe/kg) + Orlistat (30 mg/kg); all treatments given orally for 4 weeks. During sacrifice, blood serum and sectioned hypothalamic, pituitary, testicular, and adipose tissues were collected for biochemical and biomolecular assessments. Results: The HFHF diet for 12 weeks resulted in a significant upsurge in body weight, body mass index, serum fasting glucose, insulin resistance, TAG, total cholesterol, and LDL-c; HDL-c was dropped. Serum FSH, LH, and testosterone values declined. A significant disorder in expression levels of genes regulating the hypothalamic-pituitary-testicular-axis pathway. Hypothalamic GnRH, Kisspeptin-1, Kisspeptin-r1, and Adipo-R1 values declined. GnIH and Leptin-R1 values raised up. Pituitary GnRH-R values declined. Testicular tissue STAR, HSD17B3, and CYP19A1 values declined. Adipose tissue adiponectin declined, while leptin raised up. CMC-SPIONs 25-50 mg could modulate the deranged biochemical parameters and correct the deranged expression levels of all previous genes. Co-treatments revealed highly synergistic effects on all parameters. Overall, CMC-SPIONs have significant efficiency whether alone or with Orlisat in limiting obesity and consequence subfertility. Conclusion: CMC-SPIONs act as an incoming promising contender for obesity and MOSH disorders management, and need more studies on their mechanisms.


Subject(s)
Hypogonadism , Obesity , Rodent Diseases , Rats , Male , Animals , Leptin/metabolism , Leptin/therapeutic use , Orlistat/metabolism , Orlistat/pharmacology , Orlistat/therapeutic use , Testis/metabolism , Obesity/genetics , Obesity/metabolism , Obesity/veterinary , Hypogonadism/metabolism , Hypogonadism/veterinary , Hypothalamus/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/therapeutic use , Magnetic Iron Oxide Nanoparticles
18.
Sci Adv ; 10(16): eadj1987, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640244

ABSTRACT

It remains unknown whether adiposity subtypes are differentially associated with colorectal cancer (CRC). To move beyond single-trait anthropometric indicators, we derived four multi-trait body shape phenotypes reflecting adiposity subtypes from principal components analysis on body mass index, height, weight, waist-to-hip ratio, and waist and hip circumference. A generally obese (PC1) and a tall, centrally obese (PC3) body shape were both positively associated with CRC risk in observational analyses in 329,828 UK Biobank participants (3728 cases). In genome-wide association studies in 460,198 UK Biobank participants, we identified 3414 genetic variants across four body shapes and Mendelian randomization analyses confirmed positive associations of PC1 and PC3 with CRC risk (52,775 cases/45,940 controls from GECCO/CORECT/CCFR). Brain tissue-specific genetic instruments, mapped to PC1 through enrichment analysis, were responsible for the relationship between PC1 and CRC, while the relationship between PC3 and CRC was predominantly driven by adipose tissue-specific genetic instruments. This study suggests distinct putative causal pathways between adiposity subtypes and CRC.


Subject(s)
Colorectal Neoplasms , Somatotypes , Humans , Genome-Wide Association Study , Colorectal Neoplasms/genetics , Obesity/genetics , Phenotype , Genetic Variation , Risk Factors
19.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
20.
Scand J Med Sci Sports ; 34(5): e14636, 2024 May.
Article in English | MEDLINE | ID: mdl-38671551

ABSTRACT

Hypertension is a leading risk factor for cardiovascular disease and is modulated by genetic variants. This study aimed to assess the effect of obesity genetic liability and physical activity on hypertension among European and African ancestry individuals within the UK Biobank (UKB). Participants were 230 115 individuals of European ancestry and 3239 individuals of African ancestry from UKB. Genetic liability for obesity were estimated using previously published data including genetic variants and effect sizes for body mass index (BMI), waist-hip ratio (WHR) and waist circumference (WC) using Plink software. The outcome was defined as stage 2 hypertension (systolic blood pressure ≥ 140 mmHg, diastolic blood pressure ≥90 mmHg, or the use of anti-hypertensive medications). The association between obesity genetic liability and the outcome was assessed across categories of self-reported physical activity using logistic regression. Among European ancestry participants, there was up to a 1.2 greater odds of hypertension in individuals with high genetic liability and low physical activity compared to individuals with low genetic liability and high physical activity (p < 0.001). In individuals engaging in low levels of physical activity compared with moderate/high physical activity, the effect of BMI genetic liability on hypertension was greater (p interaction = 0.04). There was no evidence of an association between obesity genetic liability and hypertension in individuals of African ancestry in the whole sample or within separate physical activity groups (p > 0.05). This study suggests that higher physical activity levels are associated with lower odds of stage 2 hypertension among European ancestry individuals who carry high genetic liability for obesity. This cannot be inferred for individuals of African ancestry, possibly due to the low African ancestry sample size within the UKB.


Subject(s)
Adiposity , Black People , Body Mass Index , Exercise , Hypertension , Obesity , White People , Humans , Hypertension/genetics , White People/genetics , Male , Female , Middle Aged , Adiposity/genetics , Obesity/genetics , Black People/genetics , United Kingdom , Aged , Waist Circumference , Adult , Waist-Hip Ratio , Blood Pressure/genetics , Genetic Predisposition to Disease , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...